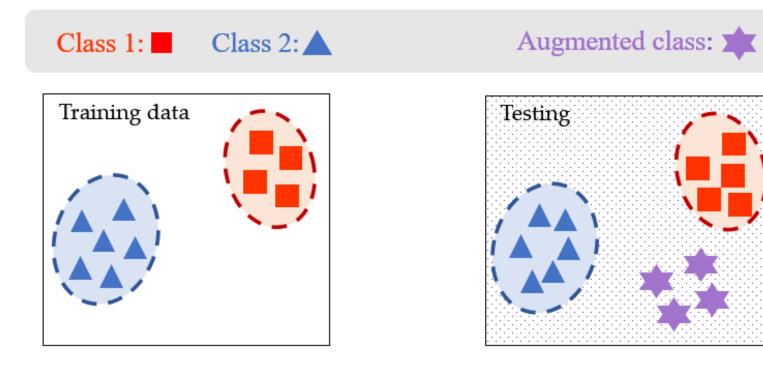
An Unbiased Risk Estimator for Learning with Augmented Classes

Yu-Jie Zhang, Peng Zhao, Lanjihong Ma, Zhi-Hua Zhou

Learning with Augmented Classes

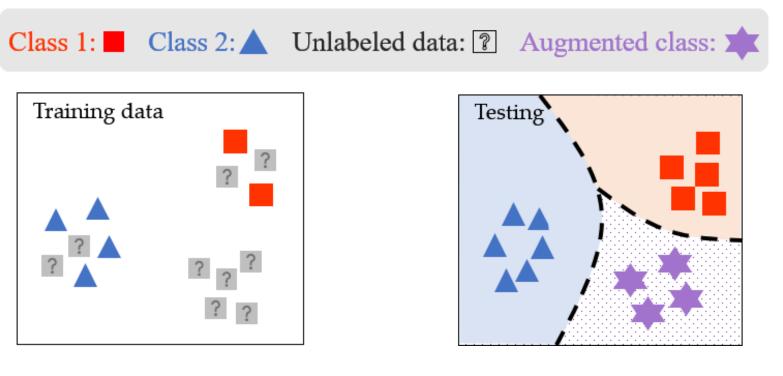
We study the learning with augmented classes problem (LAC), where augmented classes unobserved in training data might emerge in the testing phase.



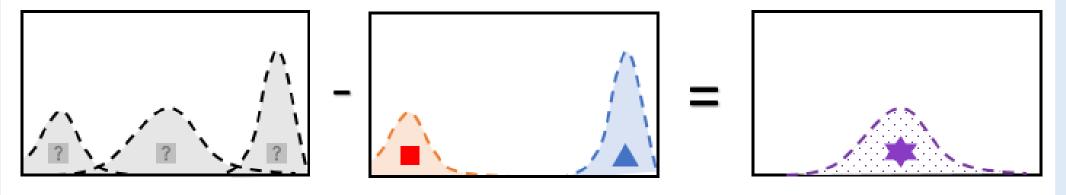
- Previous studies generally attempt to discover augmented classes by exploiting their geometric properties
- Generalization ability of learned models is less explored

Exploiting Unlabeled Data

By exploiting unlabeled data, we develop the EULAC approach, which enjoys *sound theoretical guarantees*.



Why unlabeled data is helpful?



Intuition: approximate the distribution of augmented classes by separating the distribution of known classes from unlabeled data

EULAC Approach

Class shift condition: testing distribution $P_{te_{i}}$ is **a mixture** of those of known P_{kc} and augmented classes P_{ac} .

$$P_{te} = \theta \cdot P_{\mathsf{kc}} + (1 - \theta) \cdot P_{\mathsf{ac}}$$

Where $\theta \in [0,1]$ is the mixture proportion.

Equivalence of the risk: under the class shift condition,

equal

$$\begin{aligned} R_{\psi} = \mathbb{E}_{(\mathbf{x},y) \sim P_{te}} \left[\Psi(\boldsymbol{f}(\mathbf{x}), y) \right] \\ \text{Classifiers' risk over testing distribution} \end{aligned}$$

$$R_{LAC} = \theta \cdot \mathbb{E}_{(\mathbf{x}, y) \sim P_{\mathsf{kc}}} \left[\Psi(\boldsymbol{f}(\mathbf{x}), y) \right] + \mathbb{E}_{\mathbf{x} \sim p_X^{te}(\mathbf{x})} \left[\Psi(\boldsymbol{f}(\mathbf{x}), \mathsf{ac}) \right]$$

LAC risk R_{LAC} can be assessed in training with labeled data and unlabeled data. Different algorithms can be derived by minimizing R_{LAC} on various hypothesis space.

Generalized class shift condition: consider the distribution change on known classes together with augmented classes

$$P_{te} = \underbrace{\theta_{te}^{1} \cdot P_{1} + \theta_{te}^{2} P_{2} + \cdots}_{\theta \cdot \widetilde{P}_{kc}} + (1 - \sum_{k=1}^{K} \theta_{te}^{k}) \cdot P_{ac}$$

Equivalence $R_{LAC} = R_{\psi}$ also holds under the generalized condition

Algorithms

Empirical risk minimization on *kernel-based hypothesis set*

$$\min_{f_1,\ldots,f_K,f_{\mathsf{ac}}\in\mathbb{F}}\widehat{R}_{LAC} + \lambda \Big(\sum_{k=1}^K \|f_k\|_{\mathbb{F}}^2 + \|f_{\mathsf{ac}}\|_{\mathbb{F}}^2\Big)$$

The optimization problem is **convex** if we choose:

- multiclass loss function Ψ as **one-vs-rest loss (OVR)**
- binary loss function ψ in OVR loss is convex and satisfies $\psi(z) - \psi(z) = -z$ for all $z \in \mathbb{R}$

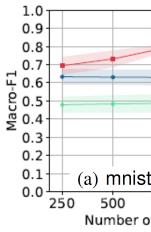
 \square We also minimize R_{LAC} with deep models

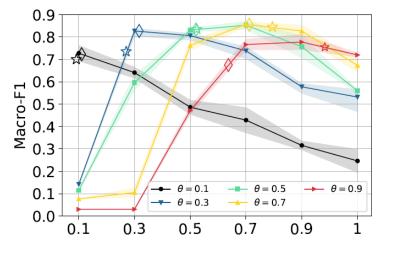
Contact

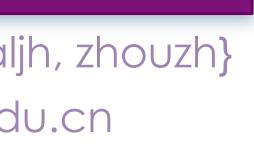
{zhangyj, zhaop, maljh, zhouzh} @lamda.nju.edu.cn

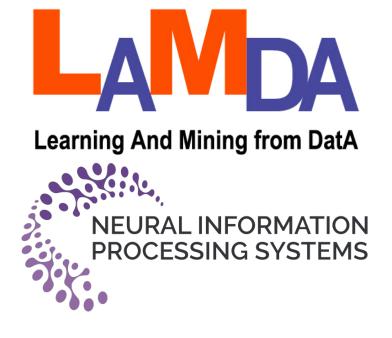
Theorem 4 (Finite-sample Convergence). Under assumptions of Theorem 3 and let $\widehat{f}_1, \ldots, \widehat{f}_K, \widehat{f}_{nc}$ be the optimal solution of the optimization problem (8) with certain $\lambda > 0$, we have

Dataset usps segment satimag optdigits pendigits SenseVeh landset mnist shuttle EULAC w/









Theoretical Analysis

Theorem 2 (Infinite-sample Consistency). Under the same condition with Theorem 1, when using $\psi(z) = (1-z)^2/4$ as the surrogate loss function, we have

 $R(f) - R^* \le \sqrt{2(R_{LAC}(f_1, \dots, f_K, f_{nc}) - R^*_{LAC})},$

which holds for all measurable functions f_1, \ldots, f_K , f_{nc} and $f(\mathbf{x}) = \arg \max_{k \in \{1, \ldots, K, nc\}} f_k(\mathbf{x})$. Here, $R_{LAC}^* = \min_{f_1,\ldots,f_K,f_{nc}} R_{LAC}(f_1,\ldots,f_K,f_{nc})$ and $R^* = \min_f R(f) = \mathbb{E}_{(\mathbf{x},y)\sim P_{te}} [\mathbb{1}(f(\mathbf{x})\neq y)]$ is the Bayes error over the testing distribution.

Consistency: minimizing *R*_{LAC} is identical to minimize the 0-1 risk *R*

$$R_{LAC}(\widehat{f}_1,\ldots,\widehat{f}_K,\widehat{f}_{nc}) - \inf_{\boldsymbol{f}\in\mathscr{F}} R_{LAC}(f_1,\ldots,f_K,f_{nc}) \le \mathcal{O}\left(\frac{K+1}{\sqrt{n_l}} + \frac{K+1}{\sqrt{n_u}}\right),$$

where \mathbf{f} denotes $(f_1, \ldots, f_K, f_{nc})$ and $\mathscr{F} = \{\mathbf{f} \mid f_1, \ldots, f_K, f_{nc} \in \mathbb{F}, \sum_{k=1}^K ||f_k||_{\mathbb{F}}^2 + ||f_{nc}||_{\mathbb{F}}^2 \le c_\lambda^2\}$. The parameter $c_\lambda > 0$ is a constant related to λ in (8). We use the \mathcal{O} -notation to keep the dependence on n_u , n_l and K only.

Convergence: our kernel-based approach can minimize R_{LAC}

Experiments

Table 1:MacroF1 comparison on 10 benchmark datasets

			I				
	OVR-SVM	W-SVM	OSNN	EVM	LACU-SVM	PAC-iForest	EULAC
	$75.42 \pm 4.87 \bullet$	$79.77 \pm 4.97 \bullet$	$63.14\pm8.91 \bullet$	$61.14 \pm 6.27 \bullet$	$69.20\pm8.34 \bullet$	$55.69 \pm 13.3 \bullet$	$\textbf{86.52} \pm \textbf{2.72}$
	$71.78 \pm 5.12 \bullet$	$80.82 \pm 9.38 \bullet$	85.10 ± 5.98	$82.13 \pm 5.88 \bullet$	$40.69 \pm 12.5 \bullet$	$63.64 \pm 13.1 \bullet$	86.17 ± 5.80
	$54.67 \pm 9.80 \bullet$	76.29 ± 13.2 •	$62.48 \pm 11.2 \bullet$	$72.10 \pm 8.16 \bullet$	$51.56 \pm 17.3 \bullet$	60.76 ± 7.79 •	81.25 ± 6.18
	$80.11 \pm 3.80 \bullet$	$87.82 \pm 4.64 \bullet$	$86.97 \pm 3.79 \bullet$	$72.00 \pm 8.33 \bullet$	$80.92 \pm 3.68 \bullet$	$71.65 \pm 5.46 \bullet$	91.54 ± 2.95
	$72.78 \pm 5.19 \bullet$	87.79 ± 3.95	$86.69 \pm 3.39 \bullet$	$\textbf{89.94} \pm \textbf{1.30}$	$70.66 \pm 6.18 \bullet$	$73.21 \pm 4.52 \bullet$	88.41 ± 4.81
ı	$48.07 \pm 3.80 \bullet$	$45.96 \pm 2.32 \bullet$	49.91 ± 6.88 •	$51.24 \pm 3.91 \bullet$	$51.61 \pm 3.31 \bullet$	$54.12 \pm 7.19 \bullet$	77.33 ± 2.17
	$60.43 \pm 7.65 \bullet$	68.91 ± 17.0 •	$73.25 \pm 9.23 \bullet$	$76.00 \pm 7.79 \bullet$	53.59 ± 9.88 •	70.50 ± 7.16 •	85.70 ± 4.46
	$66.74 \pm 2.76 \bullet$	$75.38 \pm 4.62 \bullet$	$57.75 \pm 10.9 \bullet$	58.39 ± 5.94 •	$63.53 \pm 7.58 \bullet$	48.31 ± 9.62 •	80.66 ± 5.38
	$37.39 \pm 14.1 \bullet$	$58.48 \pm 34.5 \bullet$	$48.21 \pm 16.4 \bullet$	-	$34.18 \pm 13.4 \bullet$	$29.36 \pm 8.70 \bullet$	$\textbf{66.49} \pm \textbf{17.9}$
v/ t/ 1	9/ 0/ 0	8/1/0	8/ 1/ 0	8/ 1/ 0	9/ 0/ 0	9/ 0/ 0	rank first 8/9

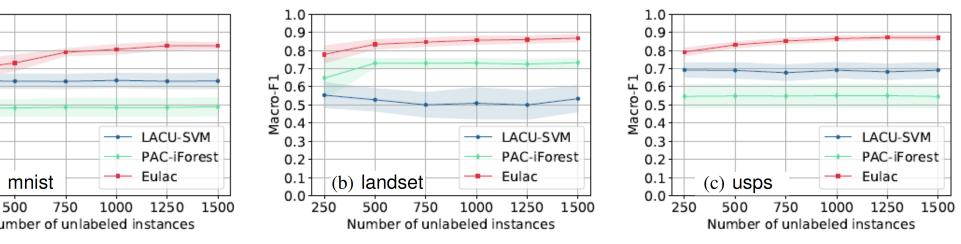


Figure 3: Influence and estimation accuracy of the mixture proportion

Results

- EULAC ranks first on 8/9 datasets
- EULAC uses *unlabeled* data well
- Performance will be influenced by θ , but *its estimation is accurate*